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FOREWORD 

Thi Army Research Institute for the Bahavionl and Social Sciences (ARI) has developed a 
wide range of statistical models to test hypotheses generated in relation to an equally wide range 
of measurement and evaluation situations. The powerful Randomized Block (RBI design has 
traditionally been a preferred model for much psychological research. The RB design has the 
stringent requirement, however, that the sample population be strictly defined and stratified 
beforehand, a requirement more appropriate in t controlled laboratory environment than in many 
Army field situations. This Technical Paper describes the development of an alternative statistical 
design which provides the advantages of the classic RB method without its operational 
disadvantages, and which will be useful not only in the Individual Training and Performance 
Evaluation Technical Area in which it was developed but in other are« of behavioral science 
research. 

The entire research is responsive to requirements of ROTE Project 2Q762717M745, Selection 
and Individual Training Research, FY 1975 Work Program, and to special requirements of the 
Deputy Chief of Staff for Personnel. 

'J. E. UHLANER. 
Technical Director 
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A MODEL FOR USING QUALITATIVE VARIABLES AS COVARIATES IN THE 
ANALYSIS OF COVARIANCE 

BRIEF 

Requirement: 

To develop, as an alternative to the traditional Randomized Block (RBI two-way analysis of 
variance design, an equally efficient statistical model that will eliminate the RB's requirement for a 
priori stratification and sampling and, at the same time, retain the RB's ability to handle 
categorical concomitant variables. That is, to develop a statistical design with the advantages of the 
classic RB method without its operational disadvantages. 

Procedure: 

The statistical model selected for comparison and test was a modified analysis of covariance 
(ANCOVA) design that does not require previously selected stratified samples and doe« 
incorporate the ability to handle categorical variabies-the Categorical Analysis of Covariance 
ICANCOVA). The powers of fixed effects RB and CANCOVA using qualitative (categorical) 
• .ncomitant variables were analytically and empirically compared. A Monte Carlo program 
simulated fixed effects analysis with two levels of treatment, one criterion variable, and a 
qualitative concomitant variable with three design types. The parameters which varied for each 
design type were sample size, ratio of numbers of row observations, eta, and magnitude of 
treatment effects. 

Findings: 

With relatively large samples, the RB and the CANCOVA designs yielded the same information 
in terms of component sums of squares. With small samples, the power relationship is a function of 
sample size, design type and amount of heterogeneity. Empirically, no practical difference was 
found between the ^ower of RB and CANCOVA when the samples are large. 

Utilization of Findings: 

Where the population cannot be well defined or stratified because of necessary administrative 
and/or physical constraints, practical field experimentation can be undertaken with a precision 
comparable to the more expensive and laborious traditional RB design. The CANCOVA requires 
only that the subjects be sampled directly from the population «nd randomly assigned to the 
different experimental treatments. 
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A MODEL FOP USING QUALITATIVE VARIABLES AS COVARIATES IN THE 
ANALYSIS OF COVARIANCE 

Experimental results  are not only affected by treatments but by 
extraneous variation which often tends to mask the primary effects of 
experimental  treatments.    The effect of extraneous variation on experi- 
mental  results Is referred  to  as experimental error variance.     In the 
behavioral  sciences experimental error variance can be  relatively  large 
and  Influence  the results of an experiment  in such a manner  that only 
large  treatment effects can be  detected,   and even these may be  subject 
to uncertainty.    By the careful design of experiments,   It  Is possible 
to control  sources of extraneous variation,  reducing experimental error 
variance  and increasing the precision of the experiment  (precision 
refers  to the power or ability of a design to detect treatment effects). 

One way of controlling experimental error variance  is by capitalizing 
on relationships between the experlmentaJ  or dependent variables  and 
external  concomitant variables.    External concomitant variables  are 
variables which are measured prior to experimentation and  are not 
affected by the experimental  treatment.    For example,   IQ could be used 
as an external concomitant variabl;  to control for error variance due to 
difference in Innate abilities.     Tuo designs which employ external 
concomitant variables to control error variance are:     (1)    Randomized 
Block  (RB),   and  (2) Analysis of Covarlance  (ANCOVA).     The RB experi- 
mentally controls error variance by using the external  concomitant 
variable  to stratify the  samples  assigned to  the  treatment categories 
into homogeneous groups called blocks,   while the ANCOVA statistically 
controls error variance by using the  linear rsgresslon of the dependent 
experimental variable on the external concomitant variable. 

Several researchers have compared  the precision of RB and ANCOVA 
designs.     Cochran1  found precision was directly related  to  the correlation 
of  the concomitant and dependent variables.    For correlations of  less 
than 0.3.   the use of RB or ANCOVA to  increase  th(  precision of the 
experiment was Inconsequential,   but as  the correlation  increases  towards 
unity,   sizeable  increases  in precision are obtained.     For large  sample 
sizes,   Cochran concluded that  for experimental designs  in which the 
relationship between the experimental  and concomitant variables was  linear, 
the precisions of the RB and ANCOVA are about the same.     Cox2  found that 

Cochran,   W.  G.    Analysis of covarlance:   Its nature  and uses. 
Blometrlka.   19JJ,  hk,   261-281. 

Cox,   D.  R.    The use of a concomitant variable in selecting an experi- 
mental design.    Blometrlka.   1997,  kk,  I5O-I58. 

I 



R3 provided greater precision when the  correlation between the variables 
was  less  than 0.6  and ANCOVA provided greater precision only when the 
correlation was greater than 0.8.     Cox's conclusion applies to designs 
with relatively small  sample sizes  and blocking levels assigned on the 
basis  of  an underlying continuum,   i.e.,   a rank ordering of  the  categories 
of the blocking variable.    Feldt3 studied designs  in which each cell had 
at  least  two observations.     (Cox's designs only had one observation per 
cell.)     Feldt concluded  that  for correlations  less than O.k,   RB resulted 
in approximately equal or greater precision than ANCOVA;  for correlations 
greater  than 0.6 ANCOVA was "superior." 

The  findings of the above  studies  are only applicable  to designs  in 
which  the concomitant variable  Is  continuous,   i.e.,   a variable which can 
take on any value within a specified range.     For example,   weight  Is  a 
continuous variable;   it can take on any value within the possible  range 
of values  applicable  to the object being weighed.    The results of  these 
studies do not  apply  to designs  in which  the concomitant variable  is 
qualitative,   i.e.,   a variable which  is categorical,   in that  it cate- 
gorizes or names;   for example,   different modes of instruction,   racial 
differences,   differences  in geographic origin,   or  social class differences 
are  all  qualitative variables.    When the concomitant variables are 
qualitative,   it  is  traditional  to use  the RB  technique.     In the RB  design 
the population is stratified into homogenous groups based on the  cate- 
gories of  the qualitative concomitant variable.     Once the population has 
been stratified,   random samples of  subjects are  selected from each  strata 
and assigned  to the different experimental  treatments.     In a laboratory 
setting,   with a well-defined population,   a priori  stratification of and 
random selection of subjects  from the entire population is easily ac- 
complished.     However,   in field experimentation,   where  the population is 
not well defined and  a priori stratification of  the entire population 
is difficult due  to administrative  and physical restrictions,   employment 
of RB designs can be difficult or  impossible.     In many situations  the 
possible  gain in precision is  far outweighed by tl-e necessary effort 
and expense of employing the RB design. 

The ANCOVA offers  a possible  alternative  to the RB design.    ANCOVA 
does not  require  a priori stratification and sampling;   the subjects  are 
sampled directly  from the  total population and randomly assigned  to 
the different experimental  treatments.    However,   the  traditional ANCOVA 
model was developed under the  assumption  that  the concomitant variables 
were random and continuous;  as such,   the  traditional ANCOVA is not 
applicable  in situations where  the concomitant variables are qualitative 
and therefore categorical.    The purpose of this research is to develop  a 
categorical ANCOVA  (CANCOVA),   i.e.,    an ANCOVA which will  allow the use 
of categorical variables,   and to compare  the precision of the CANCOVA 
with  the  traditional RB. 

F>ldt,   L.   S.    A comparison of the  precision of  three experimental 
designs employing a concomitant variable      Psychometrika.   1958,   2^, 
555-555. 
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REVIEW OF RELATED LITERATURE 

Two of the most widely used  techniques  for Increasing the precision 
of randomized experiments are:     (1)    stratlflcatlcn "r blocking of 
experimental samples  (RB), and  (2) analysis of covarlance (ANCOVA).    This 
review Is   limited  to studies   in which the  precisions of RB and ANCOVA 
were  compared. 

Cochran* showed  that,   for both RB and ANCOVA,  the gain in precision 
over completely randomized designs was a  function of the size of the 
correlation coefficient p      between the criterion variable Y and the 

concomitant variable X.     If o'    Is  the experimental error variance when 
y 

no adjustment  is  employed,  then the adjustment by covarlance reduces 
this variance to: 

\^\ 
oJa-P^y)   I i+---f 0) 

where f Is error degrees of freedom. The factor involving f is needed 

to take into account errors In the estimated regression coefficient for 
the bivariate sample.  The adjustment by blocking reduces a"" to: 

a2 (1 - pa ). (2) y v    Kxy v ' 

From equations 1 and 2 it is clear that  for small values of p       (p      < 0.5). Kxy  VKxy " 
the gain in precision afforded by using either RB or ANCOVA is   likely to 
be  inconsequential,  but as  p      Increases  towards  unity,  sizeable  increases 

in precision are obtained.    Cochran concluded  that  for experimental 
designs  in which  the relationship between X and Y is  linear,  the precisions 
of the RB and ANCOVA are about  the same  (for   large sample sizes). 

Cox 5 used two measures of imprecision as  a basis  for comparing the 
relativ.» efficiency of RB and ANCOVA.    The first,   true imprecision    was 
based on the population value of the average  error variance  for the 
difference between two treatment means  (adjusted  tor covarlance when 
appropriate).    The second, apparent  imprecision    was defined as  the 

*     Cochran,  I957,  op.  cit. 

8     Cox,  1957, op.  cit. 
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product  of the  true   imprecision and an adjustment   factor6 based on error 
degrees  of freedom.     The adjustment  factor allows   for a more meaningful 
comparison of the  relative efficiency  of two techniques which use  the 
same number of observations but have different  error degrees  of freedom. 
Symbollcally^  these  two Indices are: 

^1 " ^J y ^xy'     J 

1=1 
a 

ite + y 
t \fe + i 

where §'        _    Is  the variance of the  estimated difference between a  pair 
71 " 7j 

of treatment means averaged over all pairs of treatment means,   f    Is  the 

error degrees of freedom, n Is the number of observations per treatment 
group,  a    is  the variance of Y within each treatment population,   p       Is 

the  linear correlation coefficient between X and Y,  and [2a8  (1 -  p     )/n] 
' y xy 

Is the minimum variance of the difference between treatment means averaged 
over all pairs  of treatment means.    For any pair of designs based  on the 
same total sample size,  comparison of  the respective values of 1    will 

Indicate which of the  two designs  Is more efficient. 

Cox evaluated  I    and  1    for RB and ANCOVA using several combinations 
t a 

of total sample size, p , and numbers of levels of treatment (t). Cox 

concluded that RB provided greater precision when p < 0.6, and ANCOVA 

provided  greater precision only when p      > 0.8. 

it should be noted that designs  used by Cox were not  fixed effects. 
Cox assumed  that  the blocking levels were selected  randomly by ranking 
subjects  on the blocking variable X, subdividing the ranked subjects 
Into t groups,  and assigning one subject per block at random to each of 
the t  levels  of treatment.    Thus,   the  interaction of blocks and  treat- 
ment provides an appropriate error term.    On the other hand, designs 
used  in behavioral research are typically  fixed-effects models with 
more than onp observation per cell. 

6    Fisher,  R.  A.    The design of experiments.     London:    Oliver and Boyd, 
1949. 
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Felde7  extended Cox's study to designs   In which the main and  Inter- 
action effects were fixed and each cell had at  least two observations. 
All designs  considered by Feldt were completely randomized having t 
levels  of treatment with an equal number of observations.    The samples 
were assumed   to have been drawn  from t normally distributed  populations 
with constant  variance and a normally distributed concomitant X,   linearly 
related  to Y.     The treatment population means and variances  of the X 
variable and  the within treatment correlation coefficients  between X and 
Y were assumer'.  to be equal across all  treatment  levels. 

Feldt  used  the same Indices  of Imprecision as Cox; however,  they 
were modified  to account   for more than one  observation per  cell.    Feldt 
concluded  that  for p      < 0.4  RB resulted  In approximately equal or 

greatsr precision than ANCOVA;   for p      > 0.6 ANCOVA was  "superior."    For 

relatively high values of p      and relatively small total sample size, 

the difference  In precision in  favor of ANCOVA was appreciable.    This 
difference was  attributed  to  the relatively  small sample size not 
permitting the experimenter to employ a sufficiently large number of 
blocking  levels  to exploit  fully  the value  of the concomitant variable 
In RB.    Feldt  noted that  for  p      < 0.2 and  small sample sizes neither 

ANCOVA nor RB yielded appreciably greater precision than a  completely 
randomized design. 

In all articles reviewed,   the concomitant variable,  X,  was assumed 
to be normally  distributed.    Further,  none  of the articles was addressed 
to the situation in which the concomitant variable was qualitative. 
Feldt's and Cox's  indices  of  imprecision assume that the control variable 
had an underlying continuous distribution and that each category of the 
control variable had a definable variance.     When X is qualitative the 
withln-block variance of X is  zero;  therefore,   these indices  cannot be 
used to compare  the precision of RB and ANCOVA when the concomitant 
variable  is  qualitative. 

METHODOLOGY 

The methodology discussion  is divided  into two sections,   analytical 
and  empirical.     The analytical  section involves a comparison of the 
power of RB and CANCOVA In which  the number  of obsei-vations   (n  ) within 

each of the  I  categories  of the  concomitant variable  is constant.    The 
empirical section compares  the  power of CANCOVA in which n     is a random 

variable  (RCANCOVA) with RB in which n    is a  constant;  sample size  is 

held constant   for both designs.    This  comparison simulates  the practical 

7    Feldt,  1958,   op.  cit. 
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circumstances  surrounding the probable  implementation of these designs. 
The  Introduction of  n,   as a  rar 
models  making  it  only feasible 
designs by Monte Carlo'methods. 

The  Introduction of  n,   as a  random variable  complicates  the mathematical 
models  making  it  only feasible  to compare  the power of  the RB ai^  RCANCOVA 

Analytical 

Development of the analytical models is based on the General Linear 
Model (GIW).  Structural models for RB and CANCOVA were developed and 
appropriate parameter and design matrices were defined. Functional 
relationships were established between the RB and CANCOVA model components 
by comparing the parameter and design matrices of the respective models. 
Mathematical functions were developed for the RB and CANCOVA treatment 

effect F ratios.  The power of the two models was compared by examining 
the relationship between the mathematical functions defining the respec- 
tive treatment effect F probability distributions. 

Empirical 

The Generation of Random Normal Samples.    The generation of random 
normal  samples   for RB and  RCANCOVA was  accomplished by  using RANDN.8 

RANDN was called  separately to generate sets  of observations   for each 
cell of a design.     Each set of observations was  generated from a popu- 
lation with a specified mean and standard deviation of 1.    Cell means 
were computed  from row mean values  (row means are a function of the 
correlation coefficient,  eta,   for the specific design being run) and 
treatment effect differences.    A FORTRAN program was used to compute 
the values of row means   for each of the possible design combinations 
run;  program documentation and a table of the row means used  for each 
value of eta are presented  In Appendix A. 

Goodness-of-Flt Tests.    The randomness and goodness of fit to 
normality of the samples generated by RANDN are dependent on the Initia- 
tion number used In the generating process.    Several starting numbers 
were tested  for the  fit of the numbers  they generated to a hypothetical 
normal distribution by means of a chi-square goodness-of-fit  test. 
Documentation for the chl-square program Is presented in Appendix B. 
In addition to these tests, data were generated based on 5,000 samples, 
using each starting number,  for the  12 possible design combinations  In 
which eta and treatment effect were both 0.    The goodness of fit of the 
empirical frequency of rejection of the null hypothesis of no treatment 
effect  to the expected  frequency of rejection under the central F 
distribution was determined for six nominal alpha   levels  .01,   .05,   .10, 
.25,   .50,   .75 using a 5-degree-of-freedom chl-square goolness-of-fit test. 

University of Maryland UNTVAC II08 EXEC 8 Math-Pack users'   guide. 
College Park, Md.:     Computer Science Center, University of Maryland, 
1970. 
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Empirical  Power Comparisons.    Only designs  In which I was equal  to 
2,   5.   and k were  studied.    Several combinations oi parameters were used 
with each of  these  three design types  ("design type" refers  to the 
number of categories  In the concomitant variable).    The parameters which 
were varied  for each design type were:     (1)   sample size,   (2)  ratio of 
number of row observations,   (3)  eta,   and   (4)  magnitude of  treatment 
effect.     Table 1   liste   the values assigned  to each parameter  for each 
of the  three design types. 

Table 1 

PARAMETERS FOR EACH OF THE THREE  DESIGN TYPES 

Design Type 

Parameter 
Two-Category 

Variable 
Design 

Three-Category 
Variable 
Design 

Four-Category 
Variable 

Design 

Sample Size 20 
80 

56 
Ihk 

56 
224 

Marginal Ratlc 
equal n 
unequal  n 

1:1 1:1:1 
1^:1:1 

1:1:1:1 
k:l:l:l 

Eta 0.0 
0.3 
0.9 

0.0 
0.5 
0.9 

0.0 
0.5 
0.9 

Magnitude of 
Treatment Effect 

0.0 
0.2 
0.5 

0.0 
0.2 
0.5 

0.0 
0.2 
0.5 

Two sets of 3i000 sample data generations were run for each of the 
kB design combinations in which  the values  for eta and the  treatment 
effect were non-zero.    One  set  of data generations was analyzed by the 
RB  subroutine  and  the other by  the RCANCOV^ subroutine of the Monte 
Carlo program  (Appendix C).     For each run,   empirical F ratios  for 
treatment,   interaction  (RB),   and heterogeneity of regression  (RCANCDVA) 
were computed  along with their respective probabilities under the 
null hypotheses of no treatment effect,   no  Interaction effect,   and 
homogeneity of regression.    Each of the computed probabilities  for the 
treatment effect F ratios was compared to the 6 nominal alpha levels, 
and rejection rates were  tabulated for each alpha level.     For each 
sample generated,   the computed probability for  interaction and 
heterogeneity of regression F ratios was compared  to the   .01  and  .05 
alpha levels;   those  samples with  Interaction or heterogeneity of 

- 7 - 



regression significant  at  the  .01 and .0r)  levels were tabulated as sub- 
groups.    The empirical  rejection rate for the  treatment effect F ratios 
In each subgroup was  tabulated in the same manner as  described  for  the 
total set  of samples. 

The empirical power of a given design combination for a specified 
alpha   level  Is  equal  to the proportion of times  the  null hypothesis  of 
no treatment  effect  Is   rejected.    The empirical powers  of RB and RCANCOVA 
were compared at  each  of the six nominal alpha  levels.    The statistical 
significance of the comparisons was determined by using either of two 
statistics;   the  first   Is  a  z statistic defined by Walker and Lev:9 

^Npq/NjNa 

where Nj   Is  the number of cases  In population 1 for which the observed 
proportion of rejection  Is  pj , N,   Is  the number of cases  In population 
2 for which the observed proportion of rejections  Is   pj ,   p = pj   + Pa , 
q = 1 - p,  and N " Nj   + Na ;  the second  Is a z' statistic defined by 
Halght:10 

'        y  '  X 
z    = ■ 

vy  + x 

where y  Is  the  frequency  of rejections   In population 1 and x is  the 
frequency of rejections   in population 2.    The z statistic  is approximately 
a random variable with a  normal distribution and the  z    statistic  is 
approximately a random variable with c  Poisson distribution.    Since the 
binomial test becomes  skewed and the normal approximation is inaccurate 
for proportions close  to 0 or 1,  the z statistic was   used  for comparisons 
in which the population proportions were close  to  .5,   and  the z' statistic 
was used  for comparisons   in which the population proportions were close 
to 1 or 0. 

RESULTS 

Analytical 

The  following conventions were used  in developing  the analytical 
arguments: 

9  Walker,  H. M.,  and Lev,  J.    Statistical  inference.     New York: Holt, 
Rinehart and Winston,   1953. 

10 Halght, F. A. Handbook of the Poisson distribution. New York: 
Wiley, 1967. 



1. Superscripts designate the model or design type:     f • full model, 
r ■ reduced model,   c  = CANCOVA, and b » RB. 

2. Subscripts  Index a variable within a specific design:    1 ■ 
category of control variable,  j ■ level  of the  treatment dimension,  and 
k ■ individual within an  IJ  combination. 

3. Matrix notation is  condensed by writing a column vector as  its 
transpose row vector;   for matrices   involving repetition of elements, 
the following column vector notation is  used:    An    is  a column vector 

of n   A's;  e.g.,   1    is a  column vector of 9 I's. 

The RB model is a two-way analysis of variance design in which the 
levels  of the blocking variable correspond to the  categories  of the 
qualitative  control variable.     In the CANCOVA model the categories  of 
the qualitative control variable are translated  Into sets of dlchotomoua 

covarlables.11    If X    (m = 1,   2,  ....   1-1)  is the m      covariable score in m  v ' 

the i      (1 = 1,   2,   ...,   I)  category of the qualitative control variable, 
then the value of X    for tn « i  Is d.  and the value of X    for m ^ 1 is  e: 

m ' m 0 

the values  of d  / g are arbitrary,  e.g.,  d  = 1 and g «= 0,  or d " -1  and 
g = 1,  etc.    Table 2 schematically represents  the covariable allocation 
or blocking strategy  for a design in which the qualitative control 
variable has   I categories. 

ANOVA designs  can be represented as special  forms  of the general 
linear model  (G1M).12    The matrix form for a sample of n scores based 
on a model with p < n parameters  is 

Y - X 9 + e  , 

where Y is an (nxl) vector of random observations, X is an (nxp) design 
matiix of known quantities, G is a (pxll vector of unknown parameters, 
and e is an (nxl) vector of unobserved random errors, normally distrib- 
uted with E(£) ■ 0 and E(e e') = la', where I is the (nxn) identity matrix 
and a is the variance. Y and X represent observable data, whereas Q  and 
e are unknown. The least squares estimator of j) is defined such that 

e e » minimum. 

,1   Suits,  D.  B.    Use of dummy variables  in regression equations.    Journa 1 
of the American Statistical Association.  December 1962,  548-55I. 

'2  Dayton, C.  M.    An introduction to the general  linear model.    University 
of Maryland,  Department  of Measurement and Statistics Monograph, 
College  Park, Maryland,   I969. 

I 
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Table 2 

SCHEMATIC OF RB   (1x2)   OR CANCOVA  (1x2 WITH 1-1  COVARIABLES) 

Dlchotomous Dummy 
Covariables 

m 

Xl X2  •••   Xl.l 

Treatment 

Blocks 

10    ...  0 '111 121 

10     ...   0 ^lln. 12r 

0    0    ...  1 Y Y XI-1,11 'l-l,   21 

0    0    ...  1 

1-1 

Vl.ln^ ^-l.Snj.^ 

li-r 

0    0    ...   0 '111 '121 

0    0    ...   0 lIlnT 12n, 

10 - 



The value of 9 which minimizes e'e is found by the solution of 

d (e'e) 

ae 

where t = 1, 2, ..., p.  The solution results in a system of normal 
equations: 

X x'e = X'Y 

If X  is  nonsingular,   then (X X)       exists and  there  is  a  unique solution 

1 = (x'xrVi 
The model   for a  score  in the RB analysis   is 

i Ik 

(fb)+a(fb)   (fb)   (fb)   (fb) 

ij ijk 

(fb) 
is an where the superscript (fb) denotes full model for RB, ii 

additive constant or grand mean, or    (j ■ 1, 2, ..., J) Is the effect 

of being In the j  level of the treatment dimension, 0^ ' {t ■ 1, 2, 

..., I) is the effect of being In the 1  blocking level, y", ^ is the 
'ij .(fb) 

ijk Interaction effect of oelng In the Ij      cell  of the design,  and e 

Is  the error effect associated with the k      observation In the 

Ij      cell of the design.     If the parameuer and design matrices are 
defined using this model,  the design matrix will be  singular with 
column rank JI.     Since  the smaller order of this  design matrix Is  (J+l) 
(1+1),  In order to remove the singularity a total of (J+I+l)  restrictions 
Is needed.    These restrictions can be generated  from three  classes of 
linear restrictions: 

J 
z   a 

J-l j 
o (3) 

I 
I 

1-1 
(4) 

J 

1=1    j=l    XJ 

I- 
= o (5) 

11 



Under these restrictions, appropriate parameter and design matrices are:13 

(ft)' r(fbWfb) (fb) (A.)     (A,) (a) (fb)     (fb) • 
a "  |M. ,«!       ,&!       ,02       ••••^i-l  'Yll     >y12     '••'•1,1-1 

Si   Si 
"11 11 

^21        Si 

S-i.i S-i.i S-i.i S-i.i 

t(fl.) „ Si   Si 

S2    *Sa 

SJ      S2 

S2    S2 

S-i,a"S-x,a S-1.2 S-1.2 

S2    "Sa Sa     S2 

11 

21 

11 

21 

11 

"21 

S-1.1 S-1.1 S-1.1 

'11 

"12 

"22 

'11 

12 

"22 

'II 

12 

22 

S-1.2    S-1,2    S-1,2 

11 

21 

"1-1.1 

K 11 

12 

22 

-K 

12 12 12 

1-1.2 

12 

13 To conserve space the design and parameter matrices Illustrated through- 
out the rest of this paper are restricted to designs In which the 
treatment dimension has two levels; this restriction does not preclude 
generalization of the results to designs with more than two levels of 
the treatment dimension. 

12 - 



The model for the same score under the CANCOVA analysis  using 
separate within-cell regression Is 

1-1 
Y     =/hc)+a;hc)+  .   b 
jk j 1=1 ij    ijk 

+ e (he) 
Jk 

where (he)  Is a superscript denoting a CANCOVA design using separate 

wlthin-cell regression,  ß is an additive constant, a      '  is the 

effect of being  in the j       level of the treatment dimension ,     b       Is the 
th J 

regression coefficient due to the regression of the 1      covariable within 

the J      treatment  level on the Y scores within the J      treatment  level, 

X        is the value of the  1      covariable score  for the k      observation 
1J th (he) 

within the j      treatment   level,  and eK        is  the random error  for the 

k      observation within the j       level of treatment.    The design matrix 
using this model will be singular with column rann JI.     Since the 
smaller order of the design matrix Is JI+1 to remove the singularity 1 
restriction is needed: 

J 
T. 

J-l 
a o 

Under this  restriction, appropriate parameter and design matrices are: 

3(hc) !   (he)    (he) .       . . .       . . =   In ,«!       ,b11,b21,...,bI_1<b12,b22,...,bI_12 

k,        K       K       K ^n      ^u     ^n     ^n 
in 21 Si   Si   Si 

11 

21 

JL Js. SL iL 
^1-1.1    ^I-l.l ^1-1.1 ^1-1.1 '1-1,1 

xChc)a ^n 

22 

II II 

Sa     'Sa 
-K 

22 

^1-1,2    ^1-1.2 

-1 
"12 '12 

11 II 

12 

'22 

12 

22 

0 0 
^1-1,2 ""1-1.2 

"12 ■12 

12 

22 

'1-1,2 

12 

- 13 



Both X^ and X are  nonsingular matrices with  column rank JI.    Since 
both are based on  tull-rank models,   they  account   for  the  same  amount  of 

the  total variance and SS^     '   = SS (he )    14,  15 

An alternative  to the  (he) CANCOVA   is  a model  In which  the  pooled 
withln-cell regression coefficient   Is  used  Instead  of separate wlthln- 
cell  regression coefficients.     The model   for a score   is 

where   (c) denotes  the CANCOVA model   In which the  pooled wlthin-cell 
(c) (c) 

regression coefficient  is used,  p,v       is an additive constant, cr   '  is  the 
th J 

effect  of being in the j       level of the treatment dimension,  b    is  the 

pooled withln-cell regression coefficient due to the regression of the 
,th 

covariable on the Y scores. X ,, is the value of the 1  covariable 
Ijk th LJ1^   f-Vi 

score  for the k      individual  in the  j       level of the treatment,  and e 
th .th jk 

is the random error for the k observation within the j treatment 
level. The design matrix for this model will be singular with column 
rank J+I+l. Since the smaller order of this design matrix is J+I, in 
o-der to remove the singularity, 1 restriction is needed: 

a. 
j-1 

Under this restriction the appropriate parameter and design matrices 
are: 

i(c'' ■ [^.«I'S-V-.N.] 

14 Scheff^, H. The analysis of variance. New York:  John Wiley & Sons, 

1959- 

18   Grayblll, F. A.    An introductlor to  linear statistical models.     New 
York:    McGraw-Hill,  I96I.     Pp.   106-145. 

-  14  - 



11 

21 

11 

21 

\l        \l 

^21        ""21 

11 

21 

^1-1.1    ^1-1.1 "Vl.l ""l-l.l 1-1.1 

,(c) 11 11 11 11 11 

12 

22 

12 

-1 0 
^22 ~n22 

12 "12 

22 

12 

2n 22 

^1-1.2    ^1-1.2 ^1-1.2 ^1-1.2 ^1-1,2 

12 '\a       ^2       \2 12 

If the data are such that  for the  1      covarlable b      = b        .   for J  » 1, 

...,J-1,   then the (c) and the  (he) CANCOVA models are identical and 

account   for the same amount of total variance; however,   If for the  1 

covarlable b      ^ b. 

th 

r(hc) 3j« f b     ,,i   for some value of j    then the column rank of Xv 

ij        iJ+J- (c) 
will be greater than the column rank of 50   ' and the difference  in the 
amount  of total variance accounted  for by the two models will be reflected 
in the difference between their respective error sum of squares. In 
general, the difference between the error sum of squares for the two 
models is 

e      e 
ss, (6) 

where SS    Is the sum of squares due  to heterogeneity. 

A similar approach can be used with the RB model to define  the sum 
(rh) 

of squares  for Interaction (SS^     ').     If v..  = 0  for all  1,  J,   then the v     Y 1J >   ^ • 
appropriate parameter and design matrices  for this  reduced model are: 

e (rb) ru(rb) a(rb)   ß(rb) ß^b) ^r^   1 

Graybill,      1961,  op.   clt. 

- 15  - 



'u \l        \l        \l 
10 1 

'21 ^21 ^l ""21 

f(rb) 

I 0 
ni-l.l      ni-l.l ""l-l.l    "1-1,1 

0 
—r 

0 
'11 

'12 

'22 

■11 

'12 

'22 

'11 

'12 

'11 

'12 

5 1 
"n22 n22 

Vl.2      "1-1.2    "1-1.2    ni-l,2 

-1. 

0 
—n 

0 
'12 '12 '12 '12 

.  0 
'11 

'21 

■l-l.l 

0 
—n 

11 

'12 

'22 

1-1.2 

0 
—n 12 

The difference In column rank between Che  full and reduced RB models  Is 
(j-1) (1-1).    This difference In column rank Is due to the elimination 
of the  Interaction component  {y.,  ■ 0)   In the reduced model;  therefore^ 

the difference between the reduced and  full models'  error sum of squares 
Is due to Interaction 

SS 
(vb) 

SS (fb) = ss(fb) 
(7) 

Functional relationships  can be established between the sum of squares 
components  for the RB and CANCOVA models by examining the  least squares 
estimators   for their respective parameter vectors 

l(c) -   (x(c)Vc))-Vc)'v 

|(rb)=   ^(rMyrb^-l^rb)^ 

Since Y Is  the same score vector for both models and X 2i        .  '*'* 
least squares  estimators are equal: 

16  - 



.(c) 

(c) 

,(<=) 

1-1 

,(rb) 

>-b) Mv 

tt(rb; 

'l 
M 

• 
• 

T (8) 

7.. 

72.. 

i-i. 

From equation 8 it can be shown that. 

ss(rb) = ss(c) = ss^) . ss(hc; a a a a 

ss (rb)  __ ss(c)  . ss(fb)  ^ ss(hc) 
S b ß b 

(9) 

(io) 

By  substituting the appropriate  equalities  from equations  9 and  lo 
Into  equations 6 and 7   it  can be  shown  that 

SS,  -SS^ 
h Y 

(11) 

and  since X(c)  = X(rb) 

SS 
(rb) 

SS (c) (12) 

Table  3   Hstr  all   the component  sums  of  squares   for each model  along with 
their respective degrees  of  freedom. 

The difference  in the power of  the RB and CANCOVA analyses  to detect 
treatment effects  Is dependent on both  the amount of  Interaction  (hetero- 
geneity)  present  In the data and the difference in degrees of freedom 
associated with the mean square error term (MS   )  under each model.     For 

the  (fb)  RB with I  levels of blocking and J  levels of treatment: 

M"? 
ss^b) (fb)  _ffe . 
n. .-JI (15) 

17 - 



Table 3 

SUM OF SQUARES AND DEGREES OF FREEDOM FOR 
RB AND CANCOVA ANALYSES 

RB CANCOVA 

Sum of Degrees of Sum of Degrees of 
Squares Freedom Squares Freedom 

SS a J-l SS
a 

J-l 

SSß 
1-1 SS, (regression) 1-1 

SS 
Y 

(J-l) (1-1) 

n..-JI 

sse n..-J-I+l 

SS 
e 

ss(hc) 
e 

n..-JI 

ssh (J-l) (1-1) 

Note. The SSe for CANCOVA can be partitioned into SS^10' which is the error sum of squares jsing separate wilhin-cell 
regression coefficients, and SSh which is the sum of squares for heterogenity of regression. 

and  for the  (c)  CANCOVA analysis with  1-1 covariables and J  levels of 
treatment 

r ,     ss(fb) 
.(c)     e 

MS ,  Y.I e    n..-J-H-l 

The F ratio for the treatment effect in the (fb) RB Is 

,_v   MS      (n,.-Jl)MS 

a     rriby "  „(a) 

(14) 

(15) 
MSV SSV 

e e 

and the F ratio for treatment effect in the (c) CANCOVA analysis is 

, .   MS    (n..-J-I+l)MSn, 
r(c) =-7aT = ^ r^—2 
a        uo(c)     „„(c) 

(16) 
MSX SS' 

ib 



For sufficiently large sample sizes, 

P {ia))~-'{£) 

where  P(F   )   is   the probability  that  F     2 F    under the  central F distri- a 1 a      a 
but ion when  the sum of squares  for  interaction    (heterogeneity)   is  equal 
to 0.     When  the  sum of squares   for  interaction (heterogeneity)   is  not 
equal  to 0,   the  following relationships  hold: 

:(fb) < p  /'F
(C) 

a 
when FL   = F    > 1. 

h        Y (17) 

where F, is the F ratio for testing the null hypothesis of homogeneity 

of regression and F is the F ratio for testing the null hypothesis of 

no interaction. 

.(fb) 
a 

>  p 
a 

when F, F < 1. a 

Given that  F^     ^ > F^  the  proof of  equations  Vj and  18  is 

(n. .-JI)MS 

SS 
(fb) 

SL 
(n..-J-I+l)MS 

SS 
~ 

a 

(18) 

Since  SS(C)   = SS(hc) 

e e 
+ SS, ,  then 

h' 

(n..-JI)MS 

SS (fbT 
SL 

(n.,-J-I+l)MS 

SS ft^rr SL 

SS, 
(19) 

Dividing by MS   ,  expanding and combining  like terms: 

SS 
h (J-l)   (1-1) 
(he) (n..-Jl) SS 

dividing both sides by  (J-l)   (1-1)   /   (n..-Jl): 

(20) 

(n..-Jl)SS 

(J-1)(I-1)SS WF > 1 (21) 

since 
(n..-JI)SS MS, 

(J-1)(I-1)SS^ (he)      MO(hc) HS' 

- 19 
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-i'^] < " iic) 
when FL = F > 1. 

h   Y 

From equations I7 and 18 It is clear that when F, = Fy = 1 the power 

of the RB (Pw(RB)) is equal to the power of the CANCOVA (Pw(C)), when F  = 

F > 1, Pw(RB) > Pw(C)( and when F. = F < 1, Pw(C) > Pw(RB). 

The above relationships only apply when the sample size is sufficiently 
large to negate any degrees of freedom differences in the distribution 
of the treatment effect F ratios for the RB and CANCOVA analyses.  When 
the sample size is relatively small, the degrees of freedom difference 
between the two techniques^ along with the level of heterogeneity 
(interaction) in the samples, plays an important part in determining the 
relative power of the two techniques. 

The following arguments are used to define the functional relation- 
ship between the amount of heterogeneity (interaction) in small samples 
and the relative power of the RB and CANCOVA techniques.  If the critical 

values at a given alpha level are known for F 

(fb) a 

(fb) 
and F (c) 

or 
and SS 

(he) 

SS is defined as a constant equal to 1, then the value of the 

SS = SS^  ' can be computed as a proportion of SS^ c^ = SS^ '; the 

value of this proportion when    Pw(RB) = Pw(C)   is defined as a pivot 

point value (PV)   for the power function.    When the ratio    SS^/SS 
(he) 

h'  e 
SSV" ' / SSV""; > PV, Pw(RB) > Pw(C) but when this ratio is less than 

PV  then Pw(RB) < Pw(C). 

Table  i  lists   the  PV values   for alpha   levels  of   .Ql and   .0r   for  two-, 
three-j and four-category control variables with sample sizes varying 
from (J'1'2) to  (J-I-6)  observations per cell.     The algebraic argument 
used  to compute  the   listed  PV values   is: 

Given  that SS W   = SS^)  = 1,   then 
e ' 

,(fb) 
MS _a_ 

n-.-JI 
(22) 

and 

M 
a 

MS 

1 + SS. /n. 
h 

■,T-I+1 (23) 
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Table 4 

PIVOT POINT VALUE FOR THE .Ql AND .05 ALPHA LEVELS 

Design Type Total Sample Size 
Alpha 

.01 PV .0^ PV 

8 
Two-Category 12 
Variable Design 16 

20 
24 

12 
Three-Category 18 
Variable Design 24 

50 
56 

16 
Four-Category 24 
Variable Design 52 

to 
48 

5899 .4585 
1994 .1690 
1159 .1019 
0791 .0728 
0604 .0566 

6277 .5015 
2285 .2040 
1571 .12/0 
0977 .0925 
0770 .0729 

6550 •5095 
2577 .2185 
1582 .1501 
0997 .0982 
0791 .0761 

where F^ and F        are the critical values,  at a given alpha  level, a a > <• > 
of the treatment  effect F ratios for   the RB    and CANCOVA designs re- 
spectively    and n..   is   the total sample size.    MS    can be computed as  a 

function of the known constants F^        ,  n..tJ,   and  I using the relation- 

ship defined  in Equation 22: 

F(*>) 
MS    =      ft   TT  = K. (24) a     n..-JI v     ' 

Substitution of K for MS  in Equation 25 results in a 

F(
c) =     K 

o l+SS,/n..-J-I+l  ' 
n 

transposing gives 

SSh . Ki^py (a5) 
Fv 
a 
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Since  PV  = SS, /SS^hc^ and  SS^ - SS^hc^  = 1,   then PV  = SSU ;   therefore 
he e e ' h 

Equation 2C) can be  used  to compute  PV values   for different designs. 
Table 4  only   lists   PV values   for designs with sample  sizes  up to a maximum 
of (J'1'6).    Total sample sizes greater than (J'I-6) are sufficiently 
large that  the differences   in the distributions  of  the   treatment  effect  F 
ratios   for  the RB and CANCOVA  techniques  are negligible and  the  PV values 
can be computed directly from Equation 20. 

Empirical 

None of the 12 null design combinations (eta = 0 and treatment effect = 
0) produced significant lack of fit using a chi-square goodness-of-fit 
test.  Table 5 contains summary data for the power comparisons between 
RB and CANCOVA for all 48 design combinations in which eta and the 
treatment effect were non-zero. The empirical power for each analysis 
is expressed as the proportion of samples in which the null hypothesis 
of no treatment effect was rejected. The empirical powers for both the 
RB and RCANCOVA analyses are given for the .01, .O1;, and .10 nominal 
alpha levels for each of the 48 design combinations. The power com- 
parisons are divided into three groupings:  (1)  comparisons for the 
total number of samples generated (5,000), (2) comparisons for those 
samples in which interaction and heterogeneity were significant at the 
.01 level, and (5) comparisons for those samples in which interaction 
and heterogeneity were significant at the .0') level. 

DISCUSSION 

Analytical Results 

If tnere  is  no  interaction or heterogeneity  of  regression,  the   least- 
square estimators  of parameters  and error terms  for RB and CANCOVA are 
identical.     In situations  where  there  is   interaction or heterogeneity 
of  regression,   the  error sum of squares   for CANCOVA  can be partitioned 
into a sum of squares   for heterogeneity which equals   the  sum of squares 
for  interaction under RB analysis,  and an error  sum of  squares due  to 
the use of separate within-cell  regression coefficients  which equals 
the error  sum of squares  under RB analysis.     Given  the  situation where 
sample size   is   fixed  and  the number of observations  per   level  of  the 
control variable  is a  constant,  RB and  CANCOVA provide  the same infor- 
mation. 

Even though the two techniques can provide the  same  information  in 
terms  of component  sums  of  squares,   the relative  powers  of  the two 
techniques  are not necessarily  equal.    The  power relationship was  shown 
to be a  function of sample  size,  design type,  and amount  of heterogeneity 
(interaction).     For  situations   in which  the hetorogeneity  (interaction) 

is  equal  to  zero, MS^ < MS^     ';  therefore,   P (F       )    < P M£  ')  making 
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Table 5 

EMPIRICAL  POWER LEVELS FOR THE U8 DESIGN COMBINATIONS  IN WHICH 
ETA ANP THE TREATMENT EFFECT WERE  NON-ZERO 

Marginal Ratio 

Two-Categorv Designs 
Sample  Site  20 

euual unequal 
Treatment Effect .?. • 5 .2                           .^ 
Eta J .Q               .5               .9 ,} .9              ,1 -1 
Model Power Compariaona 

RB/RC 

Nominal 
Alpha 

Nominal 
Alpha 

Nominal 
Alpha 

.01 

.05 

.10 

RB 
RC 

RB 
RC 

RB 
RC 

RBOl/RCOl 

.01 
RB 
RC 

.05 

.10 

RB 
RC 

RB 
RC 

Rfl05/RC05 

.01 

.05 

.10 

RB 
RC 

RB 
RC 

RB 
RC 

.018? 

.0195 

.0707 

.0725 

■ 1235 
.1357 

.0000 

.0000 

.Uli 

.0833 

.2222 

.I667 

.0128 

.00& 

.1282 

.OÖH 

.1731 

.IU7U 

.0205 

.0117 

.0685 

.0637 

.1260 

.1213 

.0000 

.0000 

.0508 

.029l( 

.1765 

.0588 

.0301 

.0126 

.0977 

.0^0 

.1729 

.1152 

•0^3 
.0560 

.1813 

.1695 

.2900 

.2790 

.IU29 

.0958 

A286 
.1875 

A266 
.31*38 

.0725 

.0361 

.188U 

.1525 

.?75l* 

.2590 

.0617 

.0660 

.1517 

.1750 

.2610 

.2775 

.1795 

.0000 

.5077 

.1071 

.1*103 

.214} 

.11*3 

.0857 

.23?r 
• 16?7 

.33?7 

.2511* 

0115 
0153 

.01*7 

.013? 
.0615 
.0613 

.0550 

.0615 

0520, 
0675 

.0753 

.0695 
.1850 
.1705 

.16^ 
■ 1795 

1100, 
1280 

.1305 

.1515 
.2925, 
.2690 

.2787 

.2860 

0000 
01*55 

.0570 

.0313 
.1250 
.0968 

.0690 

.071* 

03U5 
1818 

.1111 

.0938 
.U688, 
.1935 

.2069 

.2e?r 
1379 
2727 

.1*81 

.1565 
.7188, 
.*19l* 

.2069 

.2857 

01*7 
016U 

.0525 

.01U5 
.0621 
.0*05 

.1269 

.0970 

1809 
U656 

.0976 
.0870 

•2T95« 
.1216 

.2687 

.2388 

1838 
1311 

.1870 

.1522 
.*037„ 
• 1959 

.3060 

.2761 

Sample Size 80 

RB/RC 

.01 RB 
RC 

.O38O, 

.0507 
.0*75 
.0*80 

.3207 

.3*07 
.3*13 
.3590 

Nominal 
Alpha .05 

RB 
RC .1600 

.1**3 

.1*17 
•5603« 
.6083 

.6050 

.5983 

.10 RB 
RC 

•2105,, 
.2510 

.2357 

.2210 
•6710„ 
.7220 

.7120 

.7080 

RBOl/RCOl 

.01 RB 
RC 

.0789 

.1111 
.0000 
.03*5 

.2903 
A091 

.5000 

.*333 

Nominal 
Alpha .05 

RB 
RC 

.1379 

.2222 
.071* 
.103* 

.5806, 

.77?? 
.6905 
.6667 

.10 RB 
RC 

.2368 

.2222 
.1*29 
.2*1* 

.677* 

.8182 
.6905 
.7667 

RB05/RC05 

.01 RB 
RC 

.0*26 

.06*3 
.027* 
.0*32 

.2933 

.31* 
.3893 
.31*31 

Nominal 
Alpha .05 

RB 
RC 

.1560 

.2071 
.1*38 
.1*81 

.5333 

.617* 
.62*2 
.5695 

.10 
RB 
RC 

.20?7 

.271* 
.2808 
.2*07 

.6200 

.711* 
.6913 
.6788 

0397 
0*20 

.0503 

.0**5 
.5507 
.5*55 

.5507 

.3*10 

1397 
13*7 

.1510 

.151*0 
.5787 
.5960 

•5917 
• 5637 

2180 
22*7 

.231*7 

.2215 
.6815 
.6920 

• 7110 
.7075 

0870 
0278 

.0800 

.1000 
.7500,, 
.2069 

•5769( 

.1739 

1759 
19** 

.2000 

.uooo 
1.0000„ 

.5172 
.5769 
.*3l*8 

217* 
2778 

.5200 
A500 

1.0000„ 
.7*1 

.7692 

.6087 

0507 
0*05 

.0816 

.0*96 
.31*62 
.*118 

.36*3 

.3660 

130* 
1*86 

.2109 

.1651 
.5897 
.591*8 

.621* 

.7752 

1957 
2027 

.2925 

.2199 
.5897. 
.7190 

.721* 

.6667 
25 



Table 5 - Continued 

Marginal Ratio 
Effect 

Three-CateKorv Designs 
Sample Size ^6 

equal unequal 
Treatmen .2 5 .2 .5 
Eta .5 .9 .3 .q .3 .<} .3 .q 

Model  Power Comp artsons 

RB/RC 

.01 RB 
RC 

.0165 

.0200 
.0177 
.011*7 

.IV. 3 

.1307 
.1210 
.1180 

.0307 

.0170 
.021*0 
.0190 

.11.97 

.1203 
.11*80 
.1510 

Nominal 
Alpha .05 

RB 
RC 

.0765 

.086? 
.071*7 
.0763 

.31*53 

.3277 
.2923 
.2980 

.0827 

.0790 
.0823 
.0887 

.3077 

.2953 
.3110 
.3035 

.10 RB 
RC 

.1520 

.1557 
.1527 
.11*07 

.1*81* 3„ 

.1*500 
.1*183 
.1*117 

.1523 

.11*95 
.1510 
.11*87 

.1*223 

.1*153 
.1*577 
•1*255 

RB01/RC01 

.01 RB 
RC 

.0667 

.0000 
.1176 
.0000 

.3000 

.1500 
0833 

.0370 .051*5 
.17!% 
.0263 

.0690 

.1333 
•5000., 
.lli*} 

Nominal 
Alpha .05 

RB 
RC 

.2000, 

.00*5 
.1765 
.0952 

.5500 

.5500 
.2083 
.1852 

.1923 

.172U 
.1379 
.1316 

.31*1*8 

.3333 
.5000,, 
.1711* 

.10 
RB 
RC 

.5000 

.0968 
.1*118 
.11*29 

.6500 

.1*000 
.2500 
.2595 

.2692 

.2759 
• 1579 
.181*2 

.3795 

.'>333 
.5000 
.31*29 

RB05/R005 

.01 RB 
RC 

.0301 

.0136 
.0567 
.0201* 

.21*1*1., 

.11*37 
.1293 
.1020 

.0556 

.0252 
.01*60 
.0291 

.21*18, 

.11*97 
.2690, 
.1523 

Nominal 
Alpha .05 

RB 
RC 

.1566# 

.0816 
.1277 
.0881* 

.1*1*1*1* 

.'51*36 
.3265 
.2517 

.1528 

.0881 
.1031* 
.101*7 

•611*1*« 
.3293 

• 3655 
.3113 

.10 RB 
RC 

• 251*9 
.1565 

.21*82, 

.1361 
.?70U 
.1*500 

.59l»6 
• 3197 

.31*31 
■lyrs 

.1667 

.2035 
•7?20„ 
.1*551 

.5172 

.1*1*37 

Sample  Size Ikk 

RB/RC 

.01 RB 
RC 

.031»7 

.0850 
.0860 
.0817 

.61*00 

.6600 
■ 0373 
.61*27 

.0*7 

.0873 
.0793 
.0853 

.6550 

.61*60 
.6377 
■ £5?7 

Nominal 
Alpha .05 

RB 
RC 

.22U0 

.22U7 
2210 

.2237 
.8*33 
.81*00 

.('31*7 
• 8313 

.2230 

.2250 
.2120 
.2180 

.8563 

.8?77 
.81*30 
.81*23 

.10 RB 
RC 

.5227 
• 3323 

.3173 

.3*67 
.901*0 
.9077 

.98?r 

.'9080 
.32U3 
.3337 

.3193 

.3273 
.911*0 
.9177 

.9123 

.9073 

RB01/R001 

.01 RB 
RC 

.0000 

.0000 
.1667 
.0870 

.51*55 

.6522 
.6800 
.7333 

.1379 

.1818 
.051*1 
.0750 

.5152 

.31*15 
.5000 
.6585 

Nominal 
Alpha .05 RB 

RC 
.0556» 
.3600 

.1*333 

.2171* 
.9091 
.7609 

.7200 

.8667 
.31*11* 
.3182 

.1892 

.2500 
.7376 
.7073 

.7368 

.8?73 

.10 RB 
RC 

.1111 

.5600 
.5000 
.301*3 

.951*5 

.81*78 
.81*00 

• 9333 
.2759 
.3636 

.2973 
.3500 

.9697 

.8537 
.9737 
.9756 

RB05/RC05 

.01 
RB 
RC 

.0682 

.0511 
.0701 
.0612 

.6395 

.6187 
.7105 
.6951* 

.1500, 

.0687 
.0588 
.0963 

.60:7 

.5633 
.0*95 
.61*51* 

Nominal 
Alpha .05 

RB 
RC 

.I89U 

.2117 
.2739 
.2585 

.8371 

.7937 
.8750 
.8675 

.7929 
• 2977 

.1830 

.21*1*1* 
.8559 
.8608 

.8881 

.8601 

.10 RB 
RC 

•2197, 
• 31*31 

.3691* 

.3333 
.9252 
.8812 

.9211 

.91*70 
.3786 
.371*0 

.2876 

.5556 
.9257 
.9111* 

.9776 

.91*1*1 

21* 

■     . 
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Table 5 - Continued 

Four-Cate»orv Dealgna 
Sample Size ^6 

Marginal Ratio 
Effect 

equal unequal 
Treatmenl .2 5 .c .5 
Eta .1 .9 .3 .9 ■ •> • 9 • 5 .9 
Model  Power Comparisons 

RB/RC 

.01 RB 
RC 

.OJ17 
• 0997 

.0290 

.030} 
.2553, 
.2097 

.2195 

.2107 
.0320 
.0525 

.0500 

.0280 
.2173 
.2220 

.221*7 

.321*0 

Nominal 
Alpha .05 

RB 
RC 

,11X3 
.1070 

.1U3 

.1130 .1*380 
.1*1*60 
.1*290 

.1150 
• 1055 

.1185, 

.1020 
.1*51*7 
.1*51*0 

.1*667 

.1*503 

.10 RB 
RC 

.186} 

.1820 
.1983 
.1893 

.6020, 

.7720 
.50*7 
.5505 

.1750 

.1780 
.1917 
. 1817 

.371*3 
• 3703 

.5900 

.3755 

RBOl/RCOl 

.01 RB 
RC 

.0500 

.0000 
.0667 
.0000 

.3200 

.3000 
.5656, 
.1250 

.222^ 

.0000 
.1290 
.0505 .111*3 

• 3793 
.3837 

Nominal 
Alpha .05 

RB 
RC 

.2000 

.O625 
.1333 
.1000 

.5200 

.5000 
.51*55 
.5000 

.1*071*, 

.0870 
.1290 
.1212 .1*000 

.5863 

.1*386 

.10 RB 
RC 

.2500 

.0958 
.2000 
.ax» 

.6800 

.6000 
.7727.. 
.1*250 

.5185, 

.2171* 
.l6l5 
.31*21* 

.6151* 

.3711* 

.7586, 

.5000 

RB05/RC05 

.01 RB 
RC 

.0368 

.0192 
.0526 
.0129 

.3116 

.2553 
•2727„ 
.1555 

.0671 

.0555 .0511 
.21*63 
.1667 

.3500 

.3171 

Nominal 
Alpha .05 

RB 
RC 

.13U2 

.1026 
.1382 
.0859 

.5072 

.1*610 
.5055 
.5871 

.2256 

.1560 
.1168 
.071*5 

.5075 

.1*058 
.51*05, 
.3953 

.10 RB 
RC 

.2081 

.192? 
.2039 
.1871 

.6522 

.6099 
.6561*. 
.1903 

.2988 

.21*82 
.1606 
.1759 

.5896 

.5362 
.61*81*, 
.5116 

Sample SI le 221* 

RB/RC 

.01 RB 
RC 

• 1337 
• 1363 

.11*67 

.11*20 
.871*3 
.871*0 

.8727 

.8717 
.1257 
.1230 

.1587 
• 1587 

.8730 

.8635 
.8693 
.8685 

Nominal 
Alpha .05 

RB 
RC 

.3180 
■ 3323 

.331*0 

.3267 
.9657 
■ 9583 

.9660 

.9650 
• 5230 
.5180 

.5175 

.5313 
.061*0 
.9593 

.9633 

.961*0 

- 11 
RBOl/RCOl 

.1*1*13 
A550 

.1*617 

.1*1*97 
.981*3 
• 9790 

.98UO 

.98IO 
.1*375 
.1*1*55 

.1*1*17 

.1*1*53 
.9823 
.9833 

.9637 

.9615 

.01 RB 
RC 

.1765 

.01*17 
.0690 
.1031* 

.8371 

.8355 
.9355 
.8788 

.2085 

.1538 
.1579 
.1565 

.7917 

.7727 
.731*1 
.8371 

Nominal 
Alpha .05 

RB 
RC 

.291*1 

.2083 
.2069 
.1579 

1.0000 
1.0000 

1.0000 
•9697 

.3555 

.51*62 
,»11» 
.2500 

.9585 

.951*5 
• 9310 
.9386 

- 11 
RB05/RC05 

■ 3255 
• 3555 

.31*1*8 

.31*1*8 
1.0000 
1.0000 

1.0000 
.9697 

.U585 

.1*615 
.1*158 
• 5750 

1.0000 
.951*5 

1.0000 
1.0000 

.01 RB 
RC 

.11*00 

.0800 
.679 
.1678 

.6599 
.9091 

.9167 

.9006 
■ 1799 
.1211* 

.11*19 

.1591* 
.8767 
.81*11* 

.8555 

.8150 

Nominal 
Alpha .05 

RB 
RC 

.21*00 

.2560 
.3212 
.3221 

.9682 

.9805 

.981*8 

.9752 
.5257 
.5500 

.3378 

.3625 
.9521 
.9517 

.9635 

.9512 

.10 RB 
RC 

.5335 

.3680 
.1*380 
.1*698 

.9809 
• 9935 

•9921* 
.9876 

.1*676 

.1*286 
.1*2?? 
.1*928 

.9795 

.9862 
.9871* 
.9837 

*  f OMar eompcrlKin ■Igniftcantlv dlftaram «t ,06 l«w»l. 
**  Pow*r compwtMn •tfnlfluntW dlffvrsnt mt .01 l*v«i, 

NOM:   BC       -   RCANCOVA. 
niOl -  Rl «nstytit In which inMrwHon It tlfnlflcant M tn» .01 l*v«l. 
HB06 -  RB •nalytt* In «vMch inwractlon tf »(fnlflctm M Hw .06 lavvl. 
nCOl  -  RCANCOVA analyttt In Mtilchh«Mrotww<tv)»»l*nlflMni at It« .01 t«Ml. 
RCOS -  RCANCOVA anilyali In «which hatfofantty Italflnlflcant at tha .06 »aval. 
/ - Comparad with. 
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the CANCOVA technique uniformly more powerful under these conditions. 
This relationship does not hold^ however, for conditions in which 
SS. = SS  is not equal to 0.  A value equal to the ratio  SS, / Ss(hc^ = 

h    Y 'he 
PV, was defined for situations In which Pw(RB) = Pw(C).  PV was shown to 
be a monotonic decreasing function of sample size.  The smaller sample 
sizes, within any design type)  allow for the greatest amounts of hetero- 
geneity (interaction) before Pw(RB) > Pw(c); in addition, the degrees of 
freedom difference between RB and CANCOVA techniques [df(c; > df(b)] 
provides a higher probability for rejection of the null hypothesis of 
no treatment effect under CANCOVA.  These combined factors provide 
CANCOVA with a power advantage when the sample size is relatively small 
and heterogeneity (interaction) is minimal. As the sample size increases, 
PV approaches 0 and at the same time the degrees of freedom advantage 
of CANCOVA over RB becomes negligible.  Under these conditions the power 
advantage tends to shift in favor of RB.  The relatively small PV of the 
larger sample size does not permit very high levels of heterogeneity 
(interaction) to be present before Pw(RB) becomes greater than Pw(C). 

Another aspect of the analytical results involves the implications 
regarding the relationship between power and the correlation between 
the concomitant variable and the criterion variable.  For RB and ANCOVA 
designs in which the concomitant variables are continuous, the relative 
power of each design is dependent on the value of the linear correlation 
coefficient (p) between the concomitant and criterion variables. When 
p < 0.4. the RB technique tends to be more powerful; when p > 0.6, the 
ANCOVA technique tends to be more powerful.,? However, these results do 
not generalize to the case when the concomitant variable is not continuous. 
In RB, the qualitative concomitant variable is used as a blocking variable 
and the amount of error reduction is equal to the sum of squares for 
blocking, SS ; in CANCOVA, the qualitative concomitant variable is used 

to generate a set of dichotomous dummy covariables and the amount of error 
reduction is equal to the sum of squares for the pooled within-cell 
regression, SS, .  It was shown that SS = SS, ; since the amount of error 

variability explained by the correlation between the qualitative concomi- 
tant and criterion variables for both the RB and CANCOVA analyses is 
the same, the power difference between the RB or CANCOVA techniques is 
not a function of the value of eta. 

Empirical Results 

Goodness-of-fit.     Using chi-square goodness-of-fit  tests,   it was 
shown that all 12 null design combinations produced chi-square  statistics 
which  fell within 95^ confidence  intervals  for chance occurrences.     These 
sample  runs were used  to establish the adequacy of  the random number 
generators  and to empirically validate the computational  subroutines 
within the Monte Carlo program. 

Cox,  1957,  op-  cit.;  Feldt,   1958,  op.  cit. 
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Empirical  Power Comparisons.     The empirical data showed no  Inter- 
pretable differences,   either  in magnitude  and direction,   between the 
power of the RB and RCANCOVA.    At nominal alpha  levels  of  .01,   .05, and 
.10  the number of significantly different  power  comparisons   for  the 
two-,   three-,  and   four-category design types   fell within 95$ confidence 
intervals  for chance  occurrences.     Empirically  there  is   no difference 
in power between the  two  techniques;  however,   caution must be  exercised 
In  interpreting these  results   to an applied situation.     RCANCOVA was 
designed as a post-hoc CANCOVA  in which the a  priori  fixed number  of 
observations per category of the concomitant variable  (n  .)  becomes a 

post  hoc random variable.     Since CANCOVA and RB were  shown to be 
analytically equivalent,   RCANCOVA  could be viewed as  a  post hoc blocking 
technique; however,   in actual  practice post hoc blocking  Is a  technique 
in which the a priori  fixed number of observations  per  cell of the 
design  (n    )  becomes  a  post  hoc  random variable.     Since  n..  ^ nji,   the 

RCANCOVA is not  equivalent  to a post hoc blocking technique;   further 
investigation using more realistic post hoc models   is necessary before 
Inferences can be < rawn regarding the relative power of RB and post 
hoc RB designs. 

SUMMARY 

The powers of  fixed-effects randomized block (RB) and analysis of 
covarlance (CANCOVA)  using qualitative concomitant variables were 
analytically and empirically  compared.    Analytical  comparisons were made 
of the powers of RB and CANCOVA  in which the number of observations  (n ) 
within each of the  I categories of the concomitant variable was  a 
constant.    Empirical  comparisons were made of the power of CANCOVA  In 
which n   was a random variable  (RCANCOVA) with RB  in which n    was a 

constant.    A Monte Carlo program simulated  fixed-effects analyses with 
two  levels of treatment,  one criterion variable, and a qualitative 
concomitant variable with  I  categories.    Three design types  In which 
1 was  equal to 2,   3,  and  4 were studied.    The parameters varied   for 
each design type were:     (1)   total sample size  (n,.)   (1=2,  n..»20, 80; 
1=3,  n..=36,  144;   1-4,  n. .=56,  224),   (2) ratio of number of row 
observations  (1=2,  1:1    4:1;   1=3,  1:1:1,  4:1:1;  1=4,  1:1:1:1,   4:1:1:1). 
(3)  eta  (0.0,  0.3.  0.9),  and   (4) magnitude of treatment effect   (0.0, 
0.2,  0.5). 

Analytically,   the RE and CANCOVA provided the same  Information in 
terms  of component sums  of squares.    However,  the power relationship was 
shown to be a  function of sample size,  design type,  and amount  of 
heterogeneity  (interaction)  present.     Empirically no  interpretable 
differences were found,  either in magnitude and direction,  between the 
power of the RB and RCANCOVA  for any of the design type and parameter 
combinations studied. 
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APPENDIX A 

DOCUMENTATION FOR PROGRAM WHICH COMRTES ETA 
FROM MARGINAL ROW MEANS 

A single parameter card Is  used  for each combination of marginal 
means  tested. 

Col Information 

1 number of categories  In the control variable (2)  5,   or 4) 

2-4 value of marginal mean  for  first blocking level (F5.2) 

5-7 value of marginal mean  for second blocking level  (F5.2) 

8-10 value of marginal mean  for third blocking level (F5.2) 

11-15 value of marginal mean for  fourth blocking level  (F5.2) 

(Card  contains  only as many means  as  there are  categories,  I.e.,  a  three cate- 
gory  control  variable design has  only  three marginal mean values  punched.) 

The program reads  It. the marginal mean values and computes  the value 
of eta based on the  following relationship: 

I 
■»a 

T _• J T * • •  • Taa    1-1 
T 

where  I  » number of rows,  p,      - row mean,  p,      - grand mean,  o?  is  the 

total variance and Is  set equal to one. 

Output  consists  of the values  of the row means and the computed  eta. 

Table A-l shows  the row means   for each eta  used  In the Monte-Carlo 
analyses. 

Table A-l 

ROW MEAN VALUES  FOR EACH DESIGN TYPE 

Control Variable Designs 

Value Two Ca tegory Three Category Four Category 

of 
Eta 

Row 
1 2 1 

Row 
2 5 1 2 

Row 
5 4 

•5 

•9 

1.00 

1.00 

1.60 

2.80 

1.00 

1.00 

1.50 

1.60 

1.70 

5.7^ 

1.00 

1.00 

1.20 

1.60 

1.40 

2.20 

1.80 

5.40 
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The row means in Table A-l were used to compute the actual cell 
means for each cell In a specific design.  The computed cell means were 
used by RANDN to generate the observations within that cell.  For 
example^ if the value of eta was .^ and the treatment effect was .2 for 
a two category design, then cell (ll)'* population mean would be 0.90, 
cell (12)'s population mean would be 1.10, cell (21),s population mean 
would be 1.50, and cell (22)^ population mean would be 1.70. 



APPENDIX B 

DOCUMEOTATION FOR THE  CHI-SQUARE 
GOODNESS-OF-FIT TEST 

tested 
single parameter card was used for each starting number to be 

Col 

1-6 

Information 

six digit starting number read   In under F  format  (F6.0) 

The program read In the starting number and called up the subroutine 
RANDN to generate 1,000 numbers, with a mean of 0.0 and standard deviation 
of one.     The program divides  the empirical  frequency distribution  Into 
16  Intervals  of  .U  standard deviations  each.     Observed  frequencies are 
compared with the expected  for each  Interval and chl squares  for each 
Interval  as  well as an overall chl square are computed. 

Output  consists of Che overall  chl  square,  observed  frequencies   for 
each of the  16  Intervals and chi square«   for each Interval. 
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APPENDIX C 

DOCUMENTATION FOR MONTE CARLO PROGRAM 

The following parameter cards are used by the Monte Carlo program: 

(1)     Smarting Number Card 

Col Information 

1-6 six digit starting number for RANDN  (F6.0) 
7-12 six digit starting number for RANDU  (F6.0) 

13-16 four digit field for number of sample generations  to be run 
for each design combination read  In on the following parameter 
cards  (Ik) 

(2) 

Col 

1 

2 

3-5 
6 

7-8 

9-11 

12-15 

lU-16 

Col 

0 stop program 
1 read In parameters  and run 

one digit F field for the value of eta,   (Fl.l) 

three digit F field  for treatment effect difference,   (F3.2) 

one digit I field for number of cells In the RB analysis k, 
6,   or 8 

two digit  I field defining number of observations  to be 
generated by RANDN In cell   (11) 

three digit F field defining the value of the population mean 
under which the observations In cell  (11) will be generated 
by RANDN,   (F3.2) 

two digit I field defining number of observations  to be 
generated by RANDN In cell  (21) 

three digit F field defining the value of the population 
mean under which the observations  in cell  (21) will be 
generated by RANDN,   (F3.2) 

repeat until parameters for all cells Involved  In the particular design 
are punched.     The maximum allowed  Is for a U   x 2 design with 8 cells. 

37 - 
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The program reads In the parameter cards;   card  (1)  Is  read only once 
for each set of runs.    There Is no limit  to  the number of  type   (2)  cards 
which may be  read using a single  set of starting numbers.     If  It  Is 
desirable  to use different sets of starting numbers  for each design 
combination,   then the program must be terminated after each run and a 
new set of parameter cards,   both  (1)  and  (2),   used to start a new run. 

RANDN is called up to generate data for each cell of the design. 
The data generated  are  analyzed by  the RB subroutine.    A new set of data 
is generated by RANDN under subroutine RCANCOVA.     This set has  the same 
number of observations as the RB analysis,   but   the number of observations 
per control variable category is determined by a subroutine which randomly 
assigns category classifications  to each observation generated by RANDN. 
The probability of assigning a set of covarlable  scores corresponding to 
a given category of  the concomitant variable  is  the ratio of the number 
of observations  in  that category  to  the  total  number of observations 
for  the design.     RCANCOVA produces  a set of data in which the number of 
observations  in each category of  the control  variable  is a random 
variable and is representative of the population defined in the parameter 
card.    Each observation within a category is assigned the proper set of 
covar.'able scores  and the set of data generated under RCANCOVA is analyzed 
as  if  it were  a one-way ANCOVA. 

Output consists of a table containing the   following: 

1. The design parameters 

a. The dimensions of the design 

b. Eta 

c. Treatment effect difference 

d. Cell sizes, treatment level sizes, blocking level sizes, and 
the total sample size 

2. Total sample data--summary data for all 6,000 samples generated 

a. Frequency of rejection, proportion of rejection, z and z' 
statistics at all six nominal alpha levels for the RB and 
RCANCOVA analyses 

b. A total frequency count for each analytical technique 

3. Interaction and heterogeneity at the .01 level--data for all 
samples out of the 6,000 with Interaction in the RB analysis 
significant at the .01 level and heterogeneity in the RCANCOVA 
analyses significant at the .01 level 

a. Same as 2a above 

b. Same as 2b above 
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k.    Same as 3 above except for Interaction and heterogeneity which 
was significant at the .05 level. 
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